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The viscoelastic extension of polymer fibres: creep behaviour
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Abstract

The continuous chain model developed for the description of the tensile deformation of fibres is extended to include the creep behaviour.
The description of the viscoelastic extension of the fibre is based on the linear viscoelastic shear deformation of the domain. From the time
dependent change of the chain orientation angle the creep strain of the fibre is derived. The proposed theory allows the prediction of the creep
of poly(p-phenyleneterephthalamide) fibres with an arbitrary value for the modulus or orientation par&@n2@€l Elsevier Science Ltd.

All rights reserved.
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1. Introduction extension. In particular it predicts an almost linear relation
between the compliance and the strain which is experimen-
Highly oriented crystalline polymer fibres are commonly tally well established [7,8]. During creep a linear relation
applied when a high stability of shape in a construction is between the sonic compliance and the creep strain has been
requested. This implies that for engineering purposes accu-observed as well [9,10]. A typical example of the strain and
rate values must be known for both the immediate and the the sonic compliance during the creep of a Twaron £000
long-term response of the fibre to loading. The long-term fibre, poly@-phenylene terephthalamide) and abbreviated as
behaviour of the technical fibres is predicted from the data PpPTA, has been depicted in Fig. 1. Because of the similar
of extensive measurements of creep at a constant load obehaviour of the sonic compliance during creep, the descrip-
stress relaxation at a constant deformation. A rheological tion of the viscoelastic deformation of the fibre by a viscoe-
model for the prediction of the creep and stress relaxation lastic shear deformation of domains is a logical extension of
of the fibre, based on easy measurable parameters of thehe continuous chain model [9,10].
microstructure of the fibre would facilitate and increase In this paper we present a quantitative model for the
the reliability of the prediction of the long time behaviour viscoelastic deformation of fibres of linear polymers. A
greatly. linear viscoelastic process models the viscoelastic deforma-
The elastic extension of oriented crystalline fibres has tion. The creep of PpPTA fibres with an arbitrary value for
been described successfully by the model of Northolt and the modulus or orientation parameter can be predicted by
Van der Hout [1]. Subsequently it has been generalised bythe presented equations.
Baltussen et al. to the continuous chain model for the finite  As the continuous chain model holds for the elastic defor-
deformation of fibres of linear polymers below the glass mation of arbitrary fibres of linear polymers below the glass
transition temperature [2—6]. This model describes the transition temperature, it is expected that the presented
deformation of the fibre as the sum of a linear extension theory can be used for description of the creep deformation
and a rotation of the chains towards the fibre axis. Apart of the same group of fibres. In a subsequent paper the rela-
from the typical concave shape of the stress strain curve thistion between creep, stress relaxation and the viscoelastic
theory describes the increase of the sonic modulus and theresponse to more complex loadings will be reported.
contraction of the orientation distribution during the fibore  The viscoelastic deformation, like creep and stress relaxa-
tion, depends on structural parameters like the orientation of
mpondmg author. Tel 31-26-366-4056; faxt 31-26-366-3000. the F:hains and the lateral interactipns betweep the polymer
E-mail addressmaurits.northolt@research-ahm.acordis.com chains, and external parameters like the applied stress, the
(M.G. Northolt). elapsed time since the beginning of the experiment, the

0032-3861/01/$ - see front matt€r 2001 Elsevier Science Ltd. All rights reserved.
Pll: S0032-3861(00)00604-2



3836 J.J.M. Baltussen, M.G. Northolt / Polymer 42 (2001) 3835—-3846

6.4
a b
0.0120
%)
416.3 ©
=]
O
0.0115 8
= 16.2 %
g 5
n a
0.0110 16.1 2
_|
o
Q)l
46.0
0.0105 |-
PEERTTTY EEESTRTTTT BEPETRTTTT AT TTTTT BATATETY N " 1 n n n 1
1 10" 102 10®° 10° 0.011 0.012

Time (s) Strain

Fig. 1. The creep strain versus time (a) and the sonic compliance versus the creep strain (b).

loading history, the temperature and the moisture condi- fibre modulus. The aim is to describe the stress and modulus
tions. For the application of the theory of linear viscoelas- dependence of the logarithmic creep coefficient of PpPTA
ticity the time dependence of f.e. the creep deformation fibres as shown in Fig. 2.
should be known.

In case of PpPTA fibres the creep is proportional to the
logarithm of the time. Many authors have reported the 2 Theory
“logarithmic creep law”, which holds at all values of
the applied creep stress, except below the yield stress2.1. The elastic extension of a polymer fibre
[10-12]. This property makes PpPTA fibres very suitable
for a systematic study of the effect of the other parameters. It has been shown that the elastic deformation of oriented
The slope of the curve of the creep versus the logarithm of fibres should be described by the theory of elasticity for
the time is called the logarithmic creep coefficient and itis finite deformation [2,3]. The continuous chain model for
non-linear with the applied stress. The typical convex curve the elastic extension of a polymer fibre below the glass
of the logarithmic creep coefficient versus the applied stresstransition temperature supposes that a fibre consists of
is shown in Fig. 2 for three PpPTA yarns with very different long and continuous chains of a linear polymer with their
values of the initial modulus. It is observed from Fig. 2 that average direction along the fibre axis. The deformation of
the logarithmic creep rate is a decreasing function of the the fibre is equal to the average deformation of a polymer
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Fig. 2. The logarithmic creep coefficient of three PpPTA yarns versus the stress.
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Fig. 3. A schematic picture of a chain, a chain segment and the surrounding
domain. The fibre strain is determined by the projection of the chain on the
fibre axis.

chain in the direction of the fibre axis. The basic element for
the calculations is a small straight chain segment. The defor-
mation of the chain segment is determined by the elastic
properties of the surrounding domain. Within a domain the
orientation of the polymer chain does not change and is
parallel to the symmetry axis. A schematic picture of this
representation is drawn in Fig. 3. It is supposed that a
domain has a transverse isotropic symmetry with the follow-
ing elastic constants: the chain modukisthe transverse
moduluse;, the modulus for shear parallel the symmetry
axis g, and the Poisson ratiog;, and v,3 for application

of a stress normal and parallel to the symmetry axis, respec-

tively. The orientation anglé® between the undeformed
chain segment and the fibre axis follows an orientation
distribution p(®). Assuming that the chain does not break
during the viscoelastic extension of the fibre, the extension
of the fibre by a tensile stress is equal to the change of the
projection length of the chain on the fibre axis. The projec-
tion length of the chain is given by the formula

L = L([1 + &(O, 07)] cOSH(O, 01))

€y
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with L. the contour length of the chais, the strain of the
chain segment ané the angle between the deformed chain
segment and the fibre axis. The fibre strain is equal to
_L-L
& = LO

2

The quantityL, can be calculated directly from the initial
orientation distributionp(®). For the calculation of. the
deformation of a chain segment subtending an afyleith
respect to the fibre axis has to be calculated. The deforma-
tion of the domairp has been depicted in Fig. 4. The defor-
mation gradient denoted bly-F can be decomposed in a
rotation and a symmetric tensbr- U

F=R(l +U) (©)]

It is supposed that no rigid rotation of the domain occurs. In
that caseR =T with T a shifter who parallel transports
vectors emanating fronp to vectors emanating from the
deformed domaing(p). In orthogonal co-ordinates it
holds that Fj = (1 + U);. The angle 8 between the
deformed chain segment and the fibre axis is given by the
angle betweef (i'3) andF(i’3)

Ul3

tan(f — @) = tans® = 4
A ) 1+ U @
The angle betweefi(i’;) andF(i,) is denoted by
)
@ _ 13
tan 17 UL )

The anglef is calculated using the elastic properties of the
domain, which are defined by the stored elastic energy

function
__ 1pNKL
W= 2 E E1JEKL

(6)

whereE the elasticity tensor of the linear theory of elasti-
city, and withg; = U3 + U\ Uk, being the Lagrangian or

RE)

fibre axis

Fig. 4. Schematic drawing of the deformation of the domainto ¢(p), see for details Ref. [2].
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material strain tensor. From the balance between the storedextension of oriented crystalline polymers [1]
elastic energy and the work done by the external forces the

stress—strain relation is derived (SiN? O) = (sin” ¢ cos6) (15)
( cosb)
S =Eg @) ,
Egs. (9) and (13) show that the modulus of the fibre
with S the second Piola stress tensor increases during the extension of the fibre, due to the
g NP contraction of the orientation distribution. An approxima-
ST =JF N e ® tion for the modulus of highly oriented fibres as a function
J is the Jacobian oF, and o the Cauchy stress on the Of the stress is given by
domain. Using the stress—strain relation equation (7) the 1 1 1 (sir? ©)
orientation of the deformed chain segment can be calculated — = — + — —E3 (16)
as E e 29 <1+ ﬁ)
s 29
tan(6 — @) = 21 )
9 2.2. Viscoelastic extension of a polymer fibre
with
oo Experimentally it has been shown that for various fibres
1- 22T si? g the sonic modulus increases during creep deformation at a
7= —o; O & o sin A cos6 (10 constant load [9,10]. A typical example of the compliance of
1+ e Sir? 0 + 2 sir? 6 a PpPTA fibre during creep is shown in Fig. 1. The increase
1

of the sonic modulus during the elastic deformation has
The fibre strain is calculated by the combination of the been explained by a rotation of the chain axis towards the
strain definition given by Eqgs. (2) and (9) for the orientation fibre axis, due to the elastic shear deformation of the

angle of the deformed chain segment, yielding domain. The increase of the sonic modulus during creep
(6,c0s0)  (cosf) — (cos@) sugge_sts_ that the creep deformatior_1 of these fipres_, is caused
& = 11 by a similar mechanism. The elastic deformation is due to
(cos6) {cos6) the elongation of the polymer chain and a shear displace-
with g the strain of the chain segment ment of adjacent chains. As covalent bonds are purely elas-
tic, there cannot be a contribution of the chain elongation to
g~ cos’ ¢ (12 the viscoelastic deformation of the fibre [13]. Hence, the
& viscoelastic deformation should be solely the result of a

The first term of Eq. (11) represents the strain contribution Viscoelastic shear deformation of the domains. The contin-
& caused by the elongation of the chains, the second termU0Us chain model has been developed for the description of
represents the strain caused by the rotation of the chain@ finite elastic deformation. The theory for finite linear
segments towards the fibre axis as a result of the shearviscoelasticity is a rather straightforward extension of the
deformation of the domain. The elastic compliange* f[h(?o.ry Qf finite elastic deformation [14]. In this theory the
during the extension of the fibre is equal to the derivative infinitesimal stress and strain measuesnde are replaced

of fibre strain, Eq. (11), to the applied stress yielding by their finite counterparts. So, in the material picture the
viscoelastic relations should be developed in terms of the

1 = 1 + 1 right Cauchy—Green tens@ and the Piola stresS.
Er e  29({cos6) It has been argued that the yield of a polymer fibre is due
to a permanent simple shear deformation of the domain,
1— o sin? 9(2”12 + 1 + 1) because the yield deformation is caused by a permanent
& 2 9 displacement of adjacent chains [4]. As a similar mechan-
+ % sirro ism is proposed for the viscoelastic deformation, also the
29  2¢ viscoelastic deformation should be a simple shear deforma-

><<sin2 0 cos@[ o
1+ 2

tion of the domain. The deformation of the domain consists
_ 290+ mg) + 2043~ myg) COS 0> (13)  of an elastic and a viscoelastic contribution. The elastic
& deformation is given by, and the viscoelastic deformation
o by F,. The reference configuration of the domairior the
The modulus at zero stress is given by elastic deformation is the domain deformedfy because
1 1 (sir? O) 29(1 + v13) the stress free shape of the gom@ipt a timet is given by
E = e + T[l - y ] (14 F.(»). So the total deformation gf is given by

The subscript ‘E’ indicates the second moment of the orien- F=FeFy an
tation distribution as defined in the theory for the elastic Usually the total deformation is written as the sum of the
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elastic and the plastic deformatioR:= F. + F, [14,15].

Polymer 42 (2001) 38353846 3839

Using the formulas of the elastic theaky can be expressed

However, as this equation assumes a constant referencén the fibre stress

configuration for the elastic deformation, it does not
describe the influence of the viscoelastic deformation on
the elastic deformation. For example, for the description
of the increase of the sonic modulus during creep it is neces-
sary to use Eq. (17). This equation is similar to the
commonly used equatiof = F¢-F, for the description of
plastic deformation.

A simple shear deformation is given by the tensor

)

k 1
As rotations are excludeds, should be equal to the
symmetric decomposition of the simple shear tensor

18

1+ sir? a, .
| = sing
Fy, = COSay, (19
Sin oy, COSay,

with 2tana, = k,. The orientation of the chain segment in
the viscoelastic deformed domain is given @y

tan(@, — @) = (20)

tana, = %K\,

Ke(S) ~ ~ (26)
g

Suppose that the viscoelastic simple shear deformation
depends on the same stress as the elastic shear deformation,
then the viscoelastic shear deformatianis a functional of
the load history#(t). Assuming thatc, and 7(t) are related
by a linear viscoelastic relation, the viscoelastic simple
shear deformation of a domain is given by

mm—jﬂtt(mJ

with j(t) the viscoelastic shear compliance. Combination of
Egs. (21) and (22) yields the elastic plus viscoelastic
deformation

(20

‘r(t) Ky(D)

tan(o(t) — 5

0) =

(28

The tensile strain of the viscoelastic deformed fibre is given
by Eqg. (11) in combination with the viscoelastic Eq. (28) for
0. These equations form the constitutive equations for
the viscoelastic deformation of a polymer fibre of which

The elastic deformation is defined with respect to the the viscoelastic part of the deformation is only due to a time

viscoelastic deformed domain, hence the orientation angledependent simple shear deformation of the domains. The first

0 of the domain is given by term on the right-hand side of Eq. (28) represents the elastic
~ deformation, the second term represents the time dependent

tan — 0,) = Z_TQ

The viscoelastic parametet, is related to the load history
of the Piola stresS on the domain. It is supposed thatis

21

part of the deformation. Eq. (28) can be rather complicated
because both(t) and k,(t) are functions off. In the next
section Eq. (28) will be analysed for a creep deformation in
the limit of small creep strains.

related to the same stress which causes the elastic simple

shear deformation. Therefore the elastic deformation
| +U=

is considered. The elastic simple shear parametehnas
been defined in Ref. [6] by the tangent of the angle between
the deformed chain segment and the deformed unit vector
perpendicular to the chain segment

(22)

tan&® — tans®

1+ tand? tans®
See Fig. 4 for the definitions af® and §®. For a purely
elastic simple shear deformation the parametés equal to
the simple sheak, see Eq. (18). The parameteg can be
expressed in the components®f

=

As the components df are related to the components®f
by Eq. (7), ke is a functionk¢(S). In second order of the
components obJ, k. can be approximated by

Ke = 2Ug3

= tanp = tan(8® — §Y) = 23

(29

(25

2.3. Creep at a constant load

In a creep experiment on a fibre the elongation of the fibre
is measured at a constant load. It is assumed that avtpiad
applied att=0. As the time dependent deformation
changes the load free shape of the domain is not constant.
Therefore the stress on the domain and its elastic deforma-
tion change, in particular the shear deformation and the
shear stress. Eq. (28) for a creep experiment reads

dt’

t
m>]®«m+—j
t>

29

— 4+ 7
29

In Eq. (29) the elastic deformation is analysetlatd the
contribution of the integral at= 0, j(t)7(0), has been sepa-
rated. This equation can be used for arbitrary orientation
angle ®, creep compliancgt) and finite strain. The creep
compliance is an increasing function aof The absolute
value of the integral in the right hand side of Eq. (29) is
always smaller thafj(t)(m(t) — 7(0))|.

For highly oriented fibres, like PpPTA fibres, the visco-
elastic change of will be small. For the example in Fig. 1
the decrease of the angleduring the creep is equal to 10%

tan(6(t) — O) = ja—t )— dt’
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4.0 . , . . . ; . , . dependent deformation of the fibre is given by
| | cosd(t)) — (cosh

35} | am= P bt 3D

30r i The creep strain is developed in first-orderAdf as well
& I
o 25t . (sin 6,A6)
@ 0
= I eg) = ——F——— (32
S cos®
X 20t _ ¢ )

Substitution of Eq. (30) yields
15} 4
i =1 0 33
1.0 L L 1 s 1 N
0 01 0-2 6 03 04 0.5 with the normalised creep stre&s)y given by
<sin"®>
E 1 2%t gz g
Fig. 5. The functiorK(p(®), ;) versus the orientation parame(e'rn2 O)c o} e 0 nz
for a Gaussian orientation distribution. (o) = cosO\ 15 o, 9 o 6 Sin” 6, cos 6,
29 2¢

of the value at = 0. Thereforer(t) — 7(0) can be neglected (34

with respect tor(0) and thus the integral in the right hand  Eq. (33) predicts the creep strain as a function of the applied
side of Eq. (29) can be neglected with respect to the stress and the orientation distribution. This equation can be
other terms. The orientation angle of the only elastically used if (1) the integral in Eq. (29) can be neglected; and (2)
deformed domain at =0 is denoted byf, Owing to if the first-order approximations g are allowed. For most
the viscoelastic deformation the orientation angle  technical fibres these equations can be used as their creep is
decreases during the creep experiment, therefore thergther small.

shear stress on the domain slightly decreases and the The time dependence of the shear complig(geshould
elastic shear strain decreases as well. The charge be determined empirically. A good approximation for the
6(t) — 6, of the orientation angle during creep is calcu- normalised stress can be calculated from the fibre modulus
lated by considering the contributions of both the E att= 0immediately after loading

viscoelastic increase and the elastic decrease of the

shear deformation. For the small creep strains which (¢}, =~ zgfg< 1 i) (35)
occur during the creep of highly oriented fibra® is &
very small, so the terms taf(t) — ©) = tan(Af + (6, — Using the equations of the modified series model Northolt

0)) and 7(t) = (6(t)) = (A6 + 6,) can be developed up  has shown that the experimentally observed relation
to the linear term inA§. Using Eq. (21) for elastic  petween the complianc®; = Ef* of the fibre and the

deformation att =0 the equation creep strain can be described by
Aeg
j 1 2027 Gt g, =g 36
AH = — J(t)a-f € . f
= sin 6, cos6,
2 1+ — 2 + 2— Siré 6, For highly oriented fibres, when all terms with Sipwithin
g €1 the square brackets in Eqg. (13) can be neglected, a similar
(30 relation can be calculated by making a first order develop-

) ] ~ mentinA# of the equations for the fibre strain (11) and the
results for the change of the orientation angle during modulus (13). The result is given by the equation
creep. The term 2&6/j(t) is almost equal tor(6,). It is

remarked that® — 6, is not equal to the elastic change Ag _ _ 9 K(p(0), o) (37)
of the orientation angle during the creep deformation, ADs (1+ ﬁ)
because the shear stress on the domain decreases due to 29

the viscoelastic deformation.

At a constant loadr;, due to the viscoelastic rotation of
the chain segment, also the contribution of the chain elon-
gation ¢, to the fibre strain changes slightly. For highly
oriented rigid chain polymers this contribution can be 5 4 The creep of PpPTA fibres
neglected because the chain elongation is very small and
the value of(cos6) changes only very little during creep. The time dependence of the creep compliginiseexperi-
Neglecting the contribution of the chain elongation, the time mentally determined. For PpPTA fibres the logarithmic

K is a function of the orientation distribution at the begin-
ning of the creep experiment. In Fig.k6has been drawn
versus(sin 0)e for a Gaussian orientation distribution.
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Fig. 6. The creep per decade as a function of the fibre stress according to Eq. (41) for PpPTA fibers with different orientation parameters.

creep lawj(t) = j; log(t) is experimentally well established. maximum value foro; = g. Fig. 6 shows the creep per
Substitution of the logarithmic creep law in Eq. (33) yields decade for fibres with different values of the orientation
parameter. If the sonic modulus at the beginning of the

&(®) = 31 logt(o)n (38) experiment is known, Eq. (35) can be used
Eq. (38) predicts'that the logarithmic creep coefficient of the iy logo [ 1 1
creep is proportional to the normalised creep stress. Theé&(t) = T[E - *]2 (42
constant of proportionality; is a material constant describ- f G
ing the creep of PpPTA fibres. The constawill be called Since Eq. (41) does not account for the plastic defor-
the domain shear creep constant. For purely elastic defor-mation during loading of the fibre the second method
mation equation (28) reads yields a more accurate prediction for the creep strain.
o . Both equations will be compared with the results of the
tan(6 — @) = — 2_g sin 6 cos6 (39 experiments.
In Ref. [3] it has been shown that an analytical approxima-
tion for this equation is 3. Experimental
tan® . :
tanf= —— (40) Experiments have been performed on a selection of
(1 + ﬁ) PpPTA fibres with very different values for the orientation
29 parameter and initial modulus. During the experiments on

Using Egs. (34) and (40), together with the approximation fibres A, B and E, the sonic modulus has been monitored
tan ® = sin @ for well-oriented fibres, Eq. (38) can be during creep. The sonic moduli of the fibres have been listed

written as in Table _1. _ _ _
The viscoelastic response of a fibre to a static load

&(t) = i Iozg(t) (sin? @)g i . (41) decreases considerably after the fibre has been pre-loaded
(1 " ﬁ) up to a stress higher than the stress during the creep experi-
29 ment. Leaderman explains this phenomenon by the absence

of plastic deformation in the second deformation [16].

In this equation the factor containing the fibre stress has AThe plastic deformation has been removed by the first

Table 1 higher load. The short pre-loading of the fibre is called
The sonic modulus of the fibres used for the creep measurements mechanical conditioning. The non-recoverable creep is
_ _ _ called secondary creep and the recoverable creep is
Fibre Sonic modulus (GPa) Sonic modulus after m.c. (&Pa) called primary creep [16]
A 73 84 The response of a PpPTA fibre to a short loading has been
B 88 100 depicted in Fig. 7. As the load has been applied only a few
c 121 - seconds, the viscoelastic deformation should be very small.
E 15;‘; 13_4 However, it is observed from Fig. 7 that the fibre slowly

recovers to a new equilibrium length. This implies that
% The abbreviation m.c. indicates a mechanically conditioned fibre. the non-elastic deformation is not completely permanent.
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Fig. 7. The recovery of a PpPTA fibre after being loaded at 0.8 GPa during 10 seconds. For comparison the recovery has been plotted after being loaded :
0.8 GPa during 1bseconds.

The same effect can be observed in the yield behaviour of the3.1. The relation between the sonic compliance and the
pre-loaded fibre. If the fibre is loaded shortly after the creep strain

application of the pre-load, the yield point has disappeared.

After a longer waiting time the yield, and thus non-elastic ~ According to Eq. (37) the variation of the compliance
deformation, reappears [4]. These observations indicateduring creep is related to the creep strain by the shear modu-
that division in primary and secondary creep, and in lusg. In Fig. 8 the experimental values have been compared
mechanically conditioned and not mechanically conditioned to the values predicted by the theory. The experimental
yarns, might be too simple for the complete description values and the predicted value are in the same order of
of the viscoelastic phenomena of polymer fibres. Never- magnitude, which supports the assumption that the main
theless the fibres change due to a pre-load which resultsmechanism of creep is a viscoelastic shear deformation of
in a higher initial modulus and a lower creep rate. It the domains. Because the variations of both the strain and
may be assumed that, apart from a permanent contractionthe sonic modulus during creep are very small the value of
of the orientation distribution, an eventual chain slip As/AD;is sensitive to small disturbances, which may cause
component in the deformation will be reduced by the discrepancy between the experimental and the calcu-
the mechanical conditioning. Creep experiments after a lated values. A contribution of chain slip to the creep strain
mechanical conditioning have been performed on three of would cause a too high value fdre/AD;. The continuing

the tested fibres. process of breaking and reformation of secondary bonds
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Fig. 8. The quantityAe{/AD versus the creep stress. The dotted line has been calculated with Eq. (37).
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Fig. 9. The logarithmic creep coefficient versus the creep stress for a selection of PpPTA fibres.
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Fig. 10. The logarithmic creep coefficient for a selection of PpPTA fibres versus: (a) the normalised stress calculated with formula (41); afetéb)wilcu
formula (42).
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Fig. 11. The logarithmic creep coefficient versus the stress for a selection of mechanical conditioned PpPTA fibres.
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and (b) with formula (42).
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may influence the value of the shear modulus, and thereforepoint is equal to 3t x 10 ° (GPa 1. In Fig. 12b the loga-
the value of the sonic modulus during creep. This would rithmic creep rate has been plotted versus the normalised

cause a too low value fake/AD:. stress calculated by Eq. (42). The regression line yields for
the domain shear creep constant of the mechanically condi-
3.2. The normalised creep stress tioned fibres the value.0280+ 0.0008(GPa . The stan-

dard deviation for the individual point is equal to

Creep experiments as a function of the stress have beer2.3x 10 ° (GPg %, thus also for the creep of mechanically
performed on the five PpPTA fibres listed in Table 1. The conditioned fibres the best description of the logarithmic
creep of the fibres A to D has been measured without creep rate is obtained using the normalised shear stress esti-
mechanical conditioning and the creep of the fibres A and mated from the sonic modulus at the beginning of the creep
B have been measured after mechanical conditioning asexperiment.
well. The creep of the fibre E has been measured only Asshown by Eg. (42) the creep rate has a maximum value
after mechanical conditioning. In Fig. 9 the logarithmic for oy = g. Though the data of Figs. 2, 9 and 11 show the
creep rate has been plotted versus the creep stress. For aireep rate to level off for increasing stress, the number of
fibres the logarithmic creep rate follows the typical convex data in the high stress region is not sufficient to confirm this
curve similar to the curves presented in Fig. 2, the low theoretical result.
modulus fibres showing the highest creep rate. For several
fibres the creep has been measured at the same stress twice. )
These measurements give an indication of the reproducibil-4' Conclusions
ity of the creep measurement. The variation on the logarith-
mic creep coefficient is estimated to be smaller than 3%. By
plotting the data of Fig. 9 versus the normalized stress
according to the expressions given by Egs. (41) and (42),
we can investigate whether the creep of the PpPTA yarns is

described by a single compliance consfanor all fibres a : S . . o
y g P fank viscoelastic simple shear displacement of adjacent chains in

shear modulus of 2 GPa has been assumed. In Fig. 10a th ) X . :
logarithmic creep rate has been plotted versus the normal—(:f.he domains of the fibre. This allows the calculation of the
time dependent change of chain orientation angle, which

ised creep stress calculated by Eq. (41). The dashed line has.

been determined by linear regression only varying its slope.y'elds the_wscoelastlc_ extension of the fibre. For small
All data points of the creep of all fibres lay close to the creep strains the relation for the stress dependence of the

theoretical line. From the regression line a valuejof creep rate of polymer fibres has been derived. It shows that

00311+ 0.0006(GPa * has been calculated for the the creep rate has a maximum value for a fibre stress equal
domain shear creep constant. The standard deviation fort.0 the value of the internal shear moc_iulus. By the introduc-
the individual point from the theoretical line is equal to tlon_ ofa no_rmahsed shear stres_s a_S|mpIe relation has bgen
49%10°°(GP3 . In Fig. 10b the logarithmic creep rate derived which allows the determination of the creep compli-
has been plotted versus the normalised creep stress calcu?€ constant. L

lated using the sonic modulus at the beginning of the creep As ag ‘;X"’“T‘p'e c;f the app]!!tc)atlon Webhave lsl,hdown Fgagtge
experiment with Eq. (42). The agreement of the experimen- fr::egrososaevcljotjhre%rip'l?r; Are;s[JeltSs Coafnth: g(ieriasgélseshozv
tal logarithmic creep rates with the theoretical curve is that PpPTA fibres having different moduli still have the

somewhat better. From the slope of the regression line in same value of the creep comoliance constant. Mechanical
Fig. 10a value of, = 0.0475=+ 0.0009(GPa* results for - vald -reep complian : !
conditioning of the fibres lowers this constant.

the domain shear creep constant of primary creep. The stan-
dard deviation for the individual data points is equal #>8

10"° (GP3*. Although both formulas show a fair agree-  Acknowledgements
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