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Abstract

The continuous chain model developed for the description of the tensile deformation of fibres is extended to include the creep behaviour.
The description of the viscoelastic extension of the fibre is based on the linear viscoelastic shear deformation of the domain. From the time
dependent change of the chain orientation angle the creep strain of the fibre is derived. The proposed theory allows the prediction of the creep
of poly(p-phenyleneterephthalamide) fibres with an arbitrary value for the modulus or orientation parameter.q 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Highly oriented crystalline polymer fibres are commonly
applied when a high stability of shape in a construction is
requested. This implies that for engineering purposes accu-
rate values must be known for both the immediate and the
long-term response of the fibre to loading. The long-term
behaviour of the technical fibres is predicted from the data
of extensive measurements of creep at a constant load or
stress relaxation at a constant deformation. A rheological
model for the prediction of the creep and stress relaxation
of the fibre, based on easy measurable parameters of the
microstructure of the fibre would facilitate and increase
the reliability of the prediction of the long time behaviour
greatly.

The elastic extension of oriented crystalline fibres has
been described successfully by the model of Northolt and
Van der Hout [1]. Subsequently it has been generalised by
Baltussen et al. to the continuous chain model for the finite
deformation of fibres of linear polymers below the glass
transition temperature [2–6]. This model describes the
deformation of the fibre as the sum of a linear extension
and a rotation of the chains towards the fibre axis. Apart
from the typical concave shape of the stress strain curve this
theory describes the increase of the sonic modulus and the
contraction of the orientation distribution during the fibre

extension. In particular it predicts an almost linear relation
between the compliance and the strain which is experimen-
tally well established [7,8]. During creep a linear relation
between the sonic compliance and the creep strain has been
observed as well [9,10]. A typical example of the strain and
the sonic compliance during the creep of a Twaron 1000w

fibre, poly(p-phenylene terephthalamide) and abbreviated as
PpPTA, has been depicted in Fig. 1. Because of the similar
behaviour of the sonic compliance during creep, the descrip-
tion of the viscoelastic deformation of the fibre by a viscoe-
lastic shear deformation of domains is a logical extension of
the continuous chain model [9,10].

In this paper we present a quantitative model for the
viscoelastic deformation of fibres of linear polymers. A
linear viscoelastic process models the viscoelastic deforma-
tion. The creep of PpPTA fibres with an arbitrary value for
the modulus or orientation parameter can be predicted by
the presented equations.

As the continuous chain model holds for the elastic defor-
mation of arbitrary fibres of linear polymers below the glass
transition temperature, it is expected that the presented
theory can be used for description of the creep deformation
of the same group of fibres. In a subsequent paper the rela-
tion between creep, stress relaxation and the viscoelastic
response to more complex loadings will be reported.

The viscoelastic deformation, like creep and stress relaxa-
tion, depends on structural parameters like the orientation of
the chains and the lateral interactions between the polymer
chains, and external parameters like the applied stress, the
elapsed time since the beginning of the experiment, the
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loading history, the temperature and the moisture condi-
tions. For the application of the theory of linear viscoelas-
ticity the time dependence of f.e. the creep deformation
should be known.

In case of PpPTA fibres the creep is proportional to the
logarithm of the time. Many authors have reported the
“logarithmic creep law”, which holds at all values of
the applied creep stress, except below the yield stress
[10–12]. This property makes PpPTA fibres very suitable
for a systematic study of the effect of the other parameters.
The slope of the curve of the creep versus the logarithm of
the time is called the logarithmic creep coefficient and it is
non-linear with the applied stress. The typical convex curve
of the logarithmic creep coefficient versus the applied stress
is shown in Fig. 2 for three PpPTA yarns with very different
values of the initial modulus. It is observed from Fig. 2 that
the logarithmic creep rate is a decreasing function of the

fibre modulus. The aim is to describe the stress and modulus
dependence of the logarithmic creep coefficient of PpPTA
fibres as shown in Fig. 2.

2. Theory

2.1. The elastic extension of a polymer fibre

It has been shown that the elastic deformation of oriented
fibres should be described by the theory of elasticity for
finite deformation [2,3]. The continuous chain model for
the elastic extension of a polymer fibre below the glass
transition temperature supposes that a fibre consists of
long and continuous chains of a linear polymer with their
average direction along the fibre axis. The deformation of
the fibre is equal to the average deformation of a polymer
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Fig. 1. The creep strain versus time (a) and the sonic compliance versus the creep strain (b).

Fig. 2. The logarithmic creep coefficient of three PpPTA yarns versus the stress.



chain in the direction of the fibre axis. The basic element for
the calculations is a small straight chain segment. The defor-
mation of the chain segment is determined by the elastic
properties of the surrounding domain. Within a domain the
orientation of the polymer chain does not change and is
parallel to the symmetry axis. A schematic picture of this
representation is drawn in Fig. 3. It is supposed that a
domain has a transverse isotropic symmetry with the follow-
ing elastic constants: the chain modulusec, the transverse
moduluse1, the modulus for shear parallel the symmetry
axis g, and the Poisson ratiosn12 and n13 for application
of a stress normal and parallel to the symmetry axis, respec-
tively. The orientation angleQ between the undeformed
chain segment and the fibre axis follows an orientation
distributionr (Q ). Assuming that the chain does not break
during the viscoelastic extension of the fibre, the extension
of the fibre by a tensile stresss f is equal to the change of the
projection length of the chain on the fibre axis. The projec-
tion length of the chain is given by the formula

L � Lck�1 1 1c�Q;sf �� cosu�Q;sf �l �1�

with Lc the contour length of the chain,ec the strain of the
chain segment andu the angle between the deformed chain
segment and the fibre axis. The fibre strain is equal to

1f � L 2 Lo

Lo
�2�

The quantityLo can be calculated directly from the initial
orientation distributionr (Q ). For the calculation ofL the
deformation of a chain segment subtending an angleQ with
respect to the fibre axis has to be calculated. The deforma-
tion of the domaiǹ has been depicted in Fig. 4. The defor-
mation gradient denoted byF·F can be decomposed in a
rotation and a symmetric tensorI 1 U

F � R�I 1 U� �3�
It is supposed that no rigid rotation of the domain occurs. In
that caseR� T with T a shifter who parallel transports
vectors emanating from̀ to vectors emanating from the
deformed domainw�`�: In orthogonal co-ordinates it
holds that F i

J � �I 1 U�iJ: The angle u between the
deformed chain segment and the fibre axis is given by the
angle betweenT�Î 3� andF�Î 3�

tan�u 2 Q� � tand �3� � U13

1 1 U13
�4�

The angle betweenT�Î 1� andF�Î 1� is denoted byd�1�

tand�1� � 2
U13

1 1 U11
�5�

The angleu is calculated using the elastic properties of the
domain, which are defined by the stored elastic energy
function

W � 1
2 EIJKL1IJ1KL �6�

whereE the elasticity tensor of the linear theory of elasti-
city, and with1IJ � UIJ 1 UIK UKJ being the Lagrangian or
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Fig. 3. A schematic picture of a chain, a chain segment and the surrounding
domain. The fibre strain is determined by the projection of the chain on the
fibre axis.

Fig. 4. Schematic drawing of the deformation of the domain` into w�`�; see for details Ref. [2].



material strain tensor. From the balance between the stored
elastic energy and the work done by the external forces the
stress–strain relation is derived

SIJ � EIJKL1KL �7�
with S the second Piola stress tensor

SIJ � J�F21�Ii �F21�Jj s ij �8�
J is the Jacobian ofF, and s the Cauchy stress on the
domain. Using the stress–strain relation equation (7) the
orientation of the deformed chain segment can be calculated
as

tan�u 2 Q� � ~t

2g
�9�

with

~t � 2sf

1 2
n12s f

e1
sin2 u

1 1
sf

2e1
sin2 u 1

s f

2g
sin2 u

sinu cosu �10�

The fibre strain is calculated by the combination of the
strain definition given by Eqs. (2) and (9) for the orientation
angleu of the deformed chain segment, yielding

1f � k1c cosul
kcosQl

1
kcosul 2 kcosQl

kcosQl
�11�

with 1 c the strain of the chain segment

1c <
s f cos2 u

ec
�12�

The first term of Eq. (11) represents the strain contribution
1 c caused by the elongation of the chains, the second term
represents the strain caused by the rotation of the chain
segments towards the fibre axis as a result of the shear
deformation of the domain. The elastic complianceE21

f

during the extension of the fibre is equal to the derivative
of fibre strain, Eq. (11), to the applied stresss f, yielding

1
Ef
� 1

ec
1

1
2gkcosul

×
*

sin2 u cosu

" 1 2 s f sin2 u

 
2n12

e1
1

1
2e1

1
1
g

!
1 1

s f

2g
1

s f

2e1
sin2 u

#

2
2g�1 1 n13�1 2s f �3 2 n13� cos2 u

ec

+
(13)

The modulus at zero stress is given by

1
Ef
� 1

ec
1

ksin2 QlE

2g
1 2

2g�1 1 n13�
ec

� �
�14�

The subscript ‘E’ indicates the second moment of the orien-
tation distribution as defined in the theory for the elastic

extension of oriented crystalline polymers [1]

ksin2 ulE � ksin2 u cosul
k cosul

�15�

Eqs. (9) and (13) show that the modulus of the fibre
increases during the extension of the fibre, due to the
contraction of the orientation distribution. An approxima-
tion for the modulus of highly oriented fibres as a function
of the stress is given by

1
Ef
� 1

ec
1

1
2g

ksin2 QlE

1 1
sf

2g

� �3 �16�

2.2. Viscoelastic extension of a polymer fibre

Experimentally it has been shown that for various fibres
the sonic modulus increases during creep deformation at a
constant load [9,10]. A typical example of the compliance of
a PpPTA fibre during creep is shown in Fig. 1. The increase
of the sonic modulus during the elastic deformation has
been explained by a rotation of the chain axis towards the
fibre axis, due to the elastic shear deformation of the
domain. The increase of the sonic modulus during creep
suggests that the creep deformation of these fibres is caused
by a similar mechanism. The elastic deformation is due to
the elongation of the polymer chain and a shear displace-
ment of adjacent chains. As covalent bonds are purely elas-
tic, there cannot be a contribution of the chain elongation to
the viscoelastic deformation of the fibre [13]. Hence, the
viscoelastic deformation should be solely the result of a
viscoelastic shear deformation of the domains. The contin-
uous chain model has been developed for the description of
a finite elastic deformation. The theory for finite linear
viscoelasticity is a rather straightforward extension of the
theory of finite elastic deformation [14]. In this theory the
infinitesimal stress and strain measuress and1 are replaced
by their finite counterparts. So, in the material picture the
viscoelastic relations should be developed in terms of the
right Cauchy–Green tensorC and the Piola stressS.

It has been argued that the yield of a polymer fibre is due
to a permanent simple shear deformation of the domain,
because the yield deformation is caused by a permanent
displacement of adjacent chains [4]. As a similar mechan-
ism is proposed for the viscoelastic deformation, also the
viscoelastic deformation should be a simple shear deforma-
tion of the domain. The deformation of the domain consists
of an elastic and a viscoelastic contribution. The elastic
deformation is given byFe and the viscoelastic deformation
by Fv. The reference configuration of the domain` for the
elastic deformation is the domain deformed byFv, because
the stress free shape of the domain` at a timet is given by
F v�`�: So the total deformation of̀ is given by

F � Fe·Fv �17�
Usually the total deformation is written as the sum of the
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elastic and the plastic deformation:F � Fe 1 Fv [14,15].
However, as this equation assumes a constant reference
configuration for the elastic deformation, it does not
describe the influence of the viscoelastic deformation on
the elastic deformation. For example, for the description
of the increase of the sonic modulus during creep it is neces-
sary to use Eq. (17). This equation is similar to the
commonly used equationF � Fe·Fp for the description of
plastic deformation.

A simple shear deformation is given by the tensor

1 0

k 1

 !
�18�

As rotations are excluded,Fv should be equal to the
symmetric decomposition of the simple shear tensor

Fv �
1 1 sin2 av

cosav
sinav

sinav cosav

0B@
1CA �19�

with 2tanav � kv: The orientation of the chain segment in
the viscoelastic deformed domain is given byQ v

tan�Qv 2 Q� � tanav � 1
2 kv �20�

The elastic deformation is defined with respect to the
viscoelastic deformed domain, hence the orientation angle
u of the domain is given by

tan�u 2 Qv� � ~t

2g
�21�

The viscoelastic parameterk v is related to the load history
of the Piola stressS on the domain. It is supposed thatk v is
related to the same stress which causes the elastic simple
shear deformation. Therefore the elastic deformation

I 1 U �
1 1 U11 U13

U31 1 1 U33

 !
�22�

is considered. The elastic simple shear parameterke has
been defined in Ref. [6] by the tangent of the angle between
the deformed chain segment and the deformed unit vector
perpendicular to the chain segment

ke � tanb � tan�d�3� 2 d�1�� � tand�3� 2 tand�1�

1 1 tand�1� tand�3�
�23�

See Fig. 4 for the definitions ofd (1) andd (3). For a purely
elastic simple shear deformation the parameterke is equal to
the simple sheark , see Eq. (18). The parameterke can be
expressed in the components ofC

ke �
�����
C22

p C13

J
�24�

As the components ofC are related to the components ofS
by Eq. (7),ke is a functionke(S). In second order of the
components ofU, ke can be approximated by

ke � 2U13 �25�

Using the formulas of the elastic theoryke can be expressed
in the fibre stress

ke�S� <
~t

g
�26�

Suppose that the viscoelastic simple shear deformation
depends on the same stress as the elastic shear deformation,
then the viscoelastic shear deformationk v is a functional of
the load history~t�t�: Assuming thatk v and ~t�t� are related
by a linear viscoelastic relation, the viscoelastic simple
shear deformation of a domain is given by

kv�t� �
Zt

0
j�t 2 t 0� d ~t

dt 0

� �
dt 0 �27�

with j(t) the viscoelastic shear compliance. Combination of
Eqs. (21) and (22) yields the elastic plus viscoelastic
deformation

tan�u�t�2 Q� � ~t�t�
2g

1
kv�t�

2
�28�

The tensile strain of the viscoelastic deformed fibre is given
by Eq. (11) in combination with the viscoelastic Eq. (28) for
u . These equations form the constitutive equations for
the viscoelastic deformation of a polymer fibre of which
the viscoelastic part of the deformation is only due to a time
dependent simple shear deformation of the domains. The first
term on the right-hand side of Eq. (28) represents the elastic
deformation, the second term represents the time dependent
part of the deformation. Eq. (28) can be rather complicated
because botht�t� andkv�t� are functions ofu . In the next
section Eq. (28) will be analysed for a creep deformation in
the limit of small creep strains.

2.3. Creep at a constant load

In a creep experiment on a fibre the elongation of the fibre
is measured at a constant load. It is assumed that a loads f is
applied at t � 0: As the time dependent deformation
changes the load free shape of the domain is not constant.
Therefore the stress on the domain and its elastic deforma-
tion change, in particular the shear deformation and the
shear stress~t : Eq. (28) for a creep experiment reads

tan�u�t�2 Q� � ~t�t�
2g

1
j�t�
2

~t�0�1
1
2

Zt

t.0
j�t 2 t 0� d ~t

dt 0
dt 0

�29�
In Eq. (29) the elastic deformation is analysed att and the

contribution of the integral att � 0; j�t�t�0�; has been sepa-
rated. This equation can be used for arbitrary orientation
angleQ , creep compliancej(t) and finite strain. The creep
compliance is an increasing function oft. The absolute
value of the integral in the right hand side of Eq. (29) is
always smaller thanuj�t��t�t�2 t�0��u:

For highly oriented fibres, like PpPTA fibres, the visco-
elastic change ofu will be small. For the example in Fig. 1
the decrease of the angleu during the creep is equal to 10%
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of the value att � 0: Thereforet�t�2 t�0� can be neglected
with respect tot (0) and thus the integral in the right hand
side of Eq. (29) can be neglected with respect to the
other terms. The orientation angle of the only elastically
deformed domain att � 0 is denoted byu o. Owing to
the viscoelastic deformation the orientation angleu
decreases during the creep experiment, therefore the
shear stress on the domain slightly decreases and the
elastic shear strain decreases as well. The changeDu �
u�t�2 uo of the orientation angle during creep is calcu-
lated by considering the contributions of both the
viscoelastic increase and the elastic decrease of the
shear deformation. For the small creep strains which
occur during the creep of highly oriented fibresDu is
very small, so the terms tan�u�t�2 Q� � tan�Du 1 �uo 2
Q�� and t�t� � t�u�t�� � t�Du 1 uo� can be developed up
to the linear term inDu . Using Eq. (21) for elastic
deformation att � 0 the equation

Du � 2
j�t�sf

2

1 2
2n12sf

e1
sin2 uo

1 1
sf

2g
1

s f

2e1
sin2 uo

2664
3775sinuo cosuo

�30�

results for the change of the orientation angle during
creep. The term 2Du=j�t� is almost equal tot�uo�: It is
remarked thatQ 2 uo is not equal to the elastic change
of the orientation angle during the creep deformation,
because the shear stress on the domain decreases due to
the viscoelastic deformation.

At a constant loads f, due to the viscoelastic rotation of
the chain segment, also the contribution of the chain elon-
gation 1 c to the fibre strain changes slightly. For highly
oriented rigid chain polymers this contribution can be
neglected because the chain elongation is very small and
the value ofkcosul changes only very little during creep.
Neglecting the contribution of the chain elongation, the time

dependent deformation of the fibre is given by

1f �t� � kcosu�t�l 2 kcosuol
kcosQl

�31�

The creep strain is developed in first-order ofDu as well

1f �t� � 2
ksinuoDul

kcosQl
�32�

Substitution of Eq. (30) yields

1f �t� � j�t�
2

kslN �33�

with the normalised creep stresskslN given by

kslN � sf

kcosQl

1 2
2n12sf

e1
sin2 uo

1 1
sf

2g
1

s f

2e1
sin2 uo

sin2 uo cosuo

* +

�34�
Eq. (33) predicts the creep strain as a function of the applied
stress and the orientation distribution. This equation can be
used if (1) the integral in Eq. (29) can be neglected; and (2)
if the first-order approximations inDu are allowed. For most
technical fibres these equations can be used as their creep is
rather small.

The time dependence of the shear compliancej(t) should
be determined empirically. A good approximation for the
normalised stress can be calculated from the fibre modulus
Ef at t � 0 immediately after loading

kslN < 2s f g
1
Ef

2
1
ec

� �
�35�

Using the equations of the modified series model Northolt
has shown that the experimentally observed relation
between the complianceDf � E21

f of the fibre and the
creep strain can be described by

D1f

DDf
� 2g �36�

For highly oriented fibres, when all terms with sin2 u within
the square brackets in Eq. (13) can be neglected, a similar
relation can be calculated by making a first order develop-
ment inDu of the equations for the fibre strain (11) and the
modulus (13). The result is given by the equation

D1f

DDf
� 2

g

1 1
s f

2g

� � K�r�Q�;s f � �37�

K is a function of the orientation distribution at the begin-
ning of the creep experiment. In Fig. 5K has been drawn
versusksin2 ulE for a Gaussian orientation distribution.

2.4. The creep of PpPTA fibres

The time dependence of the creep compliancej is experi-
mentally determined. For PpPTA fibres the logarithmic
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Fig. 5. The functionK�r�Q�;s f � versus the orientation parameterksin2 QlE

for a Gaussian orientation distribution.



creep lawj�t� � j1 log�t� is experimentally well established.
Substitution of the logarithmic creep law in Eq. (33) yields

1f �t� � 1
2 j1 log�t�kslN �38�

Eq. (38) predicts that the logarithmic creep coefficient of the
creep is proportional to the normalised creep stress. The
constant of proportionalityj1 is a material constant describ-
ing the creep of PpPTA fibres. The constantj1 will be called
the domain shear creep constant. For purely elastic defor-
mation equation (28) reads

tan�u 2 Q� � 2
sf

2g
sinu cosu �39�

In Ref. [3] it has been shown that an analytical approxima-
tion for this equation is

tanu � tanQ

1 1
sf

2g

� � �40�

Using Eqs. (34) and (40), together with the approximation
tanQ < sinQ for well-oriented fibres, Eq. (38) can be
written as

1f �t� � j1 log�t�
2

ksin2 QlE
sf

1 1
sf

2g

� �3 �41�

In this equation the factor containing the fibre stress has a

maximum value forsf � g: Fig. 6 shows the creep per
decade for fibres with different values of the orientation
parameter. If the sonic modulus at the beginning of the
experiment is known, Eq. (35) can be used

1f �t� � j1 log�t�s f

2
1
Ef

2
1
ec

� �
2g �42�

Since Eq. (41) does not account for the plastic defor-
mation during loading of the fibre the second method
yields a more accurate prediction for the creep strain.
Both equations will be compared with the results of the
experiments.

3. Experimental

Experiments have been performed on a selection of
PpPTA fibres with very different values for the orientation
parameter and initial modulus. During the experiments on
fibres A, B and E, the sonic modulus has been monitored
during creep. The sonic moduli of the fibres have been listed
in Table 1.

The viscoelastic response of a fibre to a static load
decreases considerably after the fibre has been pre-loaded
up to a stress higher than the stress during the creep experi-
ment. Leaderman explains this phenomenon by the absence
of plastic deformation in the second deformation [16].
The plastic deformation has been removed by the first
higher load. The short pre-loading of the fibre is called
mechanical conditioning. The non-recoverable creep is
called secondary creep and the recoverable creep is
called primary creep [16]

The response of a PpPTA fibre to a short loading has been
depicted in Fig. 7. As the load has been applied only a few
seconds, the viscoelastic deformation should be very small.
However, it is observed from Fig. 7 that the fibre slowly
recovers to a new equilibrium length. This implies that
the non-elastic deformation is not completely permanent.
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Fig. 6. The creep per decade as a function of the fibre stress according to Eq. (41) for PpPTA fibers with different orientation parameters.

Table 1
The sonic modulus of the fibres used for the creep measurements

Fibre Sonic modulus (GPa) Sonic modulus after m.c. (GPa)a

A 73 84
B 88 100
C 121 –
D 84 –
E 132 134

a The abbreviation m.c. indicates a mechanically conditioned fibre.



The same effect can be observed in the yield behaviour of the
pre-loaded fibre. If the fibre is loaded shortly after the
application of the pre-load, the yield point has disappeared.
After a longer waiting time the yield, and thus non-elastic
deformation, reappears [4]. These observations indicate
that division in primary and secondary creep, and in
mechanically conditioned and not mechanically conditioned
yarns, might be too simple for the complete description
of the viscoelastic phenomena of polymer fibres. Never-
theless the fibres change due to a pre-load which results
in a higher initial modulus and a lower creep rate. It
may be assumed that, apart from a permanent contraction
of the orientation distribution, an eventual chain slip
component in the deformation will be reduced by
the mechanical conditioning. Creep experiments after a
mechanical conditioning have been performed on three of
the tested fibres.

3.1. The relation between the sonic compliance and the
creep strain

According to Eq. (37) the variation of the compliance
during creep is related to the creep strain by the shear modu-
lusg. In Fig. 8 the experimental values have been compared
to the values predicted by the theory. The experimental
values and the predicted value are in the same order of
magnitude, which supports the assumption that the main
mechanism of creep is a viscoelastic shear deformation of
the domains. Because the variations of both the strain and
the sonic modulus during creep are very small the value of
D1 /DDf is sensitive to small disturbances, which may cause
the discrepancy between the experimental and the calcu-
lated values. A contribution of chain slip to the creep strain
would cause a too high value forD1 /DDf. The continuing
process of breaking and reformation of secondary bonds
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Fig. 7. The recovery of a PpPTA fibre after being loaded at 0.8 GPa during 10 seconds. For comparison the recovery has been plotted after being loaded at
0.8 GPa during 104 seconds.

Fig. 8. The quantityD1 f/DD versus the creep stress. The dotted line has been calculated with Eq. (37).
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Fig. 9. The logarithmic creep coefficient versus the creep stress for a selection of PpPTA fibres.

Fig. 10. The logarithmic creep coefficient for a selection of PpPTA fibres versus: (a) the normalised stress calculated with formula (41); and (b) calculated with
formula (42).
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Fig. 11. The logarithmic creep coefficient versus the stress for a selection of mechanical conditioned PpPTA fibres.

Fig. 12. The logarithmic creep coefficient for a selection of mechanical conditioned PpPTA fibres versus the normalised stress calculated (a) with formula (41)
and (b) with formula (42).



may influence the value of the shear modulus, and therefore
the value of the sonic modulus during creep. This would
cause a too low value forD1 /DDf.

3.2. The normalised creep stress

Creep experiments as a function of the stress have been
performed on the five PpPTA fibres listed in Table 1. The
creep of the fibres A to D has been measured without
mechanical conditioning and the creep of the fibres A and
B have been measured after mechanical conditioning as
well. The creep of the fibre E has been measured only
after mechanical conditioning. In Fig. 9 the logarithmic
creep rate has been plotted versus the creep stress. For all
fibres the logarithmic creep rate follows the typical convex
curve similar to the curves presented in Fig. 2, the low
modulus fibres showing the highest creep rate. For several
fibres the creep has been measured at the same stress twice.
These measurements give an indication of the reproducibil-
ity of the creep measurement. The variation on the logarith-
mic creep coefficient is estimated to be smaller than 3%. By
plotting the data of Fig. 9 versus the normalized stress
according to the expressions given by Eqs. (41) and (42),
we can investigate whether the creep of the PpPTA yarns is
described by a single compliance constantj1. For all fibres a
shear modulus of 2 GPa has been assumed. In Fig. 10a the
logarithmic creep rate has been plotted versus the normal-
ised creep stress calculated by Eq. (41). The dashed line has
been determined by linear regression only varying its slope.
All data points of the creep of all fibres lay close to the
theoretical line. From the regression line a value ofj1 �
0:0311^ 0:0006�GPa�21 has been calculated for the
domain shear creep constant. The standard deviation for
the individual point from the theoretical line is equal to
4:9 × 1025 �GPa�21

: In Fig. 10b the logarithmic creep rate
has been plotted versus the normalised creep stress calcu-
lated using the sonic modulus at the beginning of the creep
experiment with Eq. (42). The agreement of the experimen-
tal logarithmic creep rates with the theoretical curve is
somewhat better. From the slope of the regression line in
Fig. 10a value ofj1 � 0:0475^ 0:0009�GPa�21 results for
the domain shear creep constant of primary creep. The stan-
dard deviation for the individual data points is equal to 3:4 ×
1025 �GPa�21

: Although both formulas show a fair agree-
ment with the experimental data the latter should be
preferred because it accounts for the effect of plastic defor-
mation on the initial value of the normalised creep stress.

The results of the experiments on the mechanically condi-
tioned yarns are presented in Figs. 11 and 12. In Fig. 11 the
raw data has been plotted. Fig. 12a and b show the logarith-
mic creep rate versus the normalised creep stress. In Fig. 12a
the logarithmic creep rate has been plotted versus the
normalised stress calculated by Eq. (41). The regression
line yields for the domain shear creep constant of the
mechanically conditioned fibres j1 � 0:0214^
0:0009�GPa�21

: The standard deviation for the individual

point is equal to 3:4 × 1025 �GPa�21
: In Fig. 12b the loga-

rithmic creep rate has been plotted versus the normalised
stress calculated by Eq. (42). The regression line yields for
the domain shear creep constant of the mechanically condi-
tioned fibres the value 0:0280^ 0:0008�GPa�21

: The stan-
dard deviation for the individual point is equal to
2:3 × 1025 �GPa�21

; thus also for the creep of mechanically
conditioned fibres the best description of the logarithmic
creep rate is obtained using the normalised shear stress esti-
mated from the sonic modulus at the beginning of the creep
experiment.

As shown by Eq. (42) the creep rate has a maximum value
for s f � g: Though the data of Figs. 2, 9 and 11 show the
creep rate to level off for increasing stress, the number of
data in the high stress region is not sufficient to confirm this
theoretical result.

4. Conclusions

The continuous chain model for the description of the
tensile curve of a polymer fibre below the glass transition
temperature has been extended to include viscoelastic defor-
mation. Similar to the description of the yield behaviour of a
polymer fibre, the viscoelastic deformation is caused by the
viscoelastic simple shear displacement of adjacent chains in
the domains of the fibre. This allows the calculation of the
time dependent change of chain orientation angle, which
yields the viscoelastic extension of the fibre. For small
creep strains the relation for the stress dependence of the
creep rate of polymer fibres has been derived. It shows that
the creep rate has a maximum value for a fibre stress equal
to the value of the internal shear modulus. By the introduc-
tion of a normalised shear stress a simple relation has been
derived which allows the determination of the creep compli-
ance constant.

As an example of the application we have shown that the
creep behaviour of PpPTA fibres can be well described by
the proposed theory. The results of the experiments show
that PpPTA fibres having different moduli still have the
same value of the creep compliance constant. Mechanical
conditioning of the fibres lowers this constant.
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